1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

Abstract

General Description The MAX890L smart, low-voltage, P-channel, MOSFET power switch is intended for high-side load-switching applications. This switch operates with inputs from +2.7 V to +5.5 V , making it ideal for both +3 V and +5 V systems. Internal current-limiting circuitry protects the input supply against overload. Thermal-overload protection limits power dissipation and junction temperatures. The MAX890L's maximum current limit is 1.2A. The current limit through the switch is programmed with a resistor from SET to ground. The quiescent supply current is a low $10 \mu \mathrm{~A}$. When the switch is off, the supply current decreases to $0.1 \mu \mathrm{~A}$. The MAX890L is available in an 8-pin SO package.

Applications
PCMCIA Slots
Access Bus Slots
Portable Equipment

> +2.7 V to +5.5V Input Range
> Programmable Current Limit
> Low Quiescent Current
> $10 \mu \mathrm{~A}$ (typ) at VIN $=+3.3 \mathrm{~V}$
> $0.1 \mu \mathrm{~A}$ (typ) with Switch Off

- Thermal Shutdown
- $\overline{\text { FAULT }}$ Indicator Output - 0.09Ω (typ) On-Resistance

Features

Ordering Information

PART*	TEMP. RANGE	PIN- PACKAGE	CURRENT LIMIT
MAX890LC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{* *}$	1.2 A
MAX890LESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	1.2 A

* To order this unit in tape and reel, add (-T) to the end of the part number.
** Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$.

Pin Configuration

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

ABSOLUTE MAXIMUM RATINGS

IN to GND	V to +6 V
$\overline{\text { ON, }}$, $\overline{\text { AULT }}$ to GND ...-0.3V to +6V	
SET, OUT to GND	-0.3V to (VIN + 0.3V)
Maximum Continuous Switch Current1.5A	
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
SO (derate 5.88mW	471 m

Operating Temperature Range
MAX890LESA .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .471 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=+3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5} \mathbf{5}^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage		2.7		5.5	V
Quiescent Current	V IN $=5 \mathrm{~V}, \overline{\mathrm{ON}}=\mathrm{GND}, \mathrm{IOUT}=0$		13	20	$\mu \mathrm{A}$
Off-Supply Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		0.03	1	$\mu \mathrm{A}$
Off-Switch Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		0.04	15	$\mu \mathrm{A}$
Undervoltage Lockout	Rising edge, 1\% hysteresis	2.0	2.4	2.6	V
On-Resistance	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		75	130	$\mathrm{m} \Omega$
	V IN $=3.0 \mathrm{~V}$		90	150	
Current-Limit-Amplifier Threshold	VSET required to turn the switch off (Note 1)	1.178	1.240	1.302	V
Maximum Output Current Limit			1.2		A
Iout to ISET Current Ratio	IOUT $=500 \mathrm{~mA}$, V OUT $>1.6 \mathrm{~V}$	970	1110	1300	A/A
$\overline{\text { ON }}$ Input Low Voltage	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V			0.8	V
$\overline{\mathrm{ON}}$ Input High Voltage	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 3.6 V	2.0			V
	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to 5.5 V	2.4			
$\overline{\mathrm{ON}}$ Input Leakage Current	$\mathrm{V} \overline{\mathrm{ON}}=5.5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
ISET Bias Current	$\mathrm{V}_{\text {SET }}=1.24 \mathrm{~V}$, IOUT $=0 ; \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$		0.5	3	$\mu \mathrm{A}$
$\overline{\text { FAULT Logic Output Low Voltage }}$	$\mathrm{I}_{\text {SINK }}=1 \mathrm{~mA}, \mathrm{~V}_{\text {SET }}=1.4 \mathrm{~V}$			0.4	V
FAULT Logic Output High Leakage Current	$\mathrm{V}_{\text {FAULT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SET }}=1 \mathrm{~V}$		0.05	1	$\mu \mathrm{A}$
Slow-Current-Loop Response Time	20% current overdrive, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$		5		$\mu \mathrm{s}$
Fast-Current-Loop Response Time			2		$\mu \mathrm{s}$
Turn-On Time	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, I IOUT $=500 \mathrm{~mA}$		120	200	$\mu \mathrm{s}$
	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, IOUT $=500 \mathrm{~mA}$		185		
Turn-Off Time	VIN $=5 \mathrm{~V}$	2	5		$\mu \mathrm{s}$

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} I N=+3 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 2)

PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
Operating Voltage		3.0	5.5	\checkmark
Quiescent Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \overline{\mathrm{ON}}=\mathrm{GND}, \mathrm{I}$ OUT $=0$		50	$\mu \mathrm{A}$
Off-Supply Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		2.2	$\mu \mathrm{A}$
Off-Switch Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}$ IN $=5.5 \mathrm{~V}, \mathrm{~V}$ OUT $=0$		15	$\mu \mathrm{A}$
Undervoltage Lockout	Rising edge, 1\% hysteresis	2.0	2.9	V
On-Resistance	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		130	$\mathrm{m} \Omega$
	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$		150	
Current-Limit-Amplifier Threshold	$\mathrm{V}_{\text {SET }}$ required to turn the switch off (Note 1)	1.14	1.34	V
IOUT to ISET Current Ratio	IOUT $=500 \mathrm{~mA}$, Vout $>1.6 \mathrm{~V}$	925	1390	A/A
$\overline{\text { FAULT Logic Output Low Voltage }}$	ISINK $=1 \mathrm{~mA}, \mathrm{~V}$ SET $=1.4 \mathrm{~V}$		0.4	V
Turn-On Time	VIN $=5 \mathrm{~V}$		200	$\mu \mathrm{s}$
Turn-Off Time	VIN $=5 \mathrm{~V}$	1	20	$\mu \mathrm{s}$

Note 1: Tested with Iout $=100 \mathrm{~mA}$ and VSET raised until VIN - VOUT $\geq 0.8 \mathrm{~V}$.
Note 2: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

OFF-SWITCH CURRENT
vs. TEMPERATURE

NORMALIZED OUTPUT CURRENT
vs. OUTPUT VOLTAGE

QUIESCENT CURRENT vs. TEMPERATURE

NORMALIZED ON-RESISTANCE
vs. TEMPERATURE

TURN-ON TIME vs. TEMPERATURE

OFF-SUPPLY CURRENT vs. TEMPERATURE

Iout/lset Ratio
vs. ILIMIT

TURN-OFF TIME vs. TEMPERATURE

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

PIN	NAME	FUNCTION
1,2	IN	Input. P-channel MOSFET source. Bypass IN with a 1μ F capacitor to ground.
3	$\overline{\mathrm{ON}}$	Active-Low Switch On Input. A logic low turns the switch on.
4	GND	Ground
5	SET	Set Current-Limit Input. A resistor from SET to ground sets the current limit for the switch. RSET $=1.38 \times 10^{3} /$ ILIMIT, where ILIMIT is the desired current limit in amperes.
6,7	OUT	Switch Output. P-channel MOSFET drain. Bypass OUT with a 0.1 μ F capacitor to ground.
8	$\overline{\text { FAULT }}$	Fault-Indicator Output. This open-drain output goes low when in current limit or when the die temperature exceeds $+135^{\circ} \mathrm{C}$.

Detailed Description

The MAX890L P-channel MOSFET power switch limits output current to a programmed level. When the output current is increased beyond the programmed current limit, or 1.2 A (IMAX), the current also increases through the replica switch (Iout/1110) and through RSET (Figure 1). The current-limit error amplifier compares the voltage across RSET to the internal +1.24 V reference, and regulates the current back to the lesser of the programmed limit (ILIMIT) or 1.2A.
This switch is not bidirectional; therefore, the input voltage must be higher than the output voltage.

Setting the Current Limit
The MAX890L features internal current-limiting circuitry with a maximum programmable value (IMAX) of 1.2A. For best performance, set the current limit (ILIMIT) between $0.2 \mathrm{I}_{\mathrm{MAX}} \leq \operatorname{ILIMIT} \leq \operatorname{IMAX}$. This current limit remains in effect throughout the input supply-voltage range.
Program the current limit with a resistor (RSET) from SET to ground (Figure 2) as follows:

$$
\begin{gathered}
\text { ISET }=\mathrm{I}_{\text {LIMIT }} / 1110 \\
\text { RSET }=1.24 \mathrm{~V} / \mathrm{I}_{8}=1.38 \times 10^{3} / \mathrm{I} \text { LIMIT }
\end{gathered}
$$

where ILIMIT is the desired current limit.

Short-Circuit Protection

The MAX890L is a short-circuit-protected switch. In the event of an output short circuit or current-overload condition, the current through the switch is limited by the internal current-limiting error amplifier to $1.5 \times$ ILIMIT. When the fault condition is removed, the replica error amplifier will set the current limit back to lıImit.

Figure 1. Functional Diagram
For a high $\mathrm{dV}_{\mathrm{DS}} /$ dt during an output short-circuit condition, the switch turns off and disconnects the input supply from the output. The current-limiting amplifier then slowly turns the switch on with the output current limited to $1.5 \times$ ILIMIT. When the fault condition is removed, the current limit is set back to ILIMIT. Refer to Output ShortCircuit Fast-Loop Response and Output Over-Load

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

Figure 2. Setting the Current Limit

Slow-Loop Response in the Typical Operating Characteristics.

Thermal Shutdown
The MAX890L features thermal shutdown. The switch turns off when the junction temperature exceeds $+135^{\circ} \mathrm{C}$. Once the device cools by $10^{\circ} \mathrm{C}$, the switch turns back on. If the fault short-circuit condition is not removed, the switch will cycle on and off, resulting in a pulsed output.

Fault Indicator
The MAX890L provides a fault output (FAULT). This open-drain output goes low when in current limit or when the die temperature exceeds $+135^{\circ} \mathrm{C}$. A $100 \mathrm{k} \Omega$ pull-up resistor from $\overline{F A U L T}$ to IN provides a logiccontrol signal.

Applications Information

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A $1 \mu \mathrm{~F}$ ceramic capacitor will be adequate for
most applications; however, higher capacitor values will further reduce the voltage drop at the input.

Output Capacitor
Connect a $0.1 \mu \mathrm{~F}$ capacitor from OUT to GND. One function of this capacitor is to prevent inductive parasitics from pulling OUT negative during turn-off.

Layout and Thermal-Dissipation Consideration

To take full advantage of the switch-response time to output short-circuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device (no more than 5 mm).
Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power as follows:

$$
P=I^{2} \text { LIMIT } \times \text { RON }
$$

where RON is the on-resistance of the switch.
When the output is short circuited, the voltage drop across the switch equals the input supply. Hence, the power dissipated across the switch increases, as does the die temperature. If the fault condition is not removed, the thermal-overload-protection circuitry turns the switch off until the die temperature falls by $10^{\circ} \mathrm{C}$. A ground plane in contact with the device will help dissipate additional heat.

Chip Information
TRANSISTOR COUNT: 396

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad

